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On the concepts of Lie and covariant derivatives of spinors: 
Part 1 

D J Hurleyt and M A Vandyckfg 
t Mathematics Department. University College Cork, Cork City, lreland 
$ Physics Depamnent, University College Cork. Cork City, Ireland and Physics Department, 
Cork Regional Technical College. Bishopstown, County Cork, Ireland 

Received 18 January 1994 

Abstract. A unified framewok for defining Lie and covxiant derivntives of spinor fields is 
presented, which is applicable without resmction on the spacetime connection. The results 
obtained previously by other authors me malysed and compared with the outcomes of this new 
formalism. 

1. Introduction 

The problem of defining the concepts of the Lie and covariant derivatives of a spinor field 
has already been approached, sometimes in the context of physical applications, by many 
authors [1-25]. Several formalisms, some of which are inequivalent (e.g. [7] and [23]), 
exist in the literature. (For a good review, see [22].) However, their common characteristic 
is that the question is usually posed in special cases, the Lie derivative Cx@ of a spinor @ 
being defined exclusively when X is a conformal Killing vector, and the covariant derivative 
V$, when the connection is compatible with the metric g (in the sense Vg  = 0). It is also 
sometimes claimed [23,25] that it is not possible to define, in a geometrically meaningful 
manner, these notions in cases more general than those just stated. 

Recently, however, the problem was analysed again [21], and an attempt was made to 
define L,y@ in full generality by using group-theoretical methods. This shed light on the 
question, in pariicular on the existence and uniqueness of the operator Cx, and made contact 
with some of the existing literature (mainly [5-7,251) but it did not provide a framework 
in which other approaches, such as [23], could be put in perspective. 

In the present work, we shall develop precisely such a formalism and we shall show how 
it generalizes and unifies all the previous results. It should be emphasized that the existence 
of a general formalism is important not only from the point of view of differential geometry 
but also for physics, since the covariant derivative of a spinor is essential, for instance, 
in the formulation of Dirac’s equation in curved space [ I l l ,  whereas the Lie derivative is 
required to express the spacetime symmetries of theories ([ 191 and references therein). 

The treatment below will be arranged as follows. In section 2. we shall briefly recall 
Weyl’s method [I] for Lie and covariant derivatives since it shows clearly the origin of 
the problem encountered when one tries to extend to spinor fields the derivatives defined 
for tensor fields. Then, in sections 3 and 4, we shall introduce the general construction. 
This will be done in two steps: in section 3, we shall derive the covariant derivative of a 
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vector field in a non-standard manner which suggests how to extend the concept of covariant 
derivative to a spinor field, and this extension itself will be carried out in section 4. Finally, 
in section 5, we shall analyse the outcomes and compare them with those from the literature. 

It should be noted that the Lie and the covariant derivative may be. treated in an 
analogous fashion. Therefore, to avoid unnecessary repetitions, we shall restrict attention 
to the covariant derivative in sections 2-4. The interpretation of the results in terms of the 
Lie derivative are collected in the conclusion and in appendix 1. 

D J Hurley and M A Vandyck 

2. Weyl’s method for the covariant derivative 

The purpose of this brief section is to illustrate the geometrical reason for the difficulty 
caused, in general, in defining the parallel transport (and thus the covariant derivative) 
of a spinor field. The considerations discussed here will be heuristic but they will prove 
enlightening for the more rigorous developments to be presented later. 

Spinors are primarily defined in Minkowski space 1241, for which the metric reads 
g = vr. dx’ 0 dx” vpu 3 diag(+l, + I ,  + I ,  -1) (2.1) 

in the natural frame dx’ induced by the Cartesian coordinates x’. In a general four- 
dimensional manifold M ,  a (non-holonomic) orthonormal [24] frame e@) can be chosen, 
in such a way that, by definition, the metric is expressed as 

where the caret over the indices emphasizes that an orthonormal frame is employed. The 
similarity of (2.2) with (2.1) enables one to extend to manifolds most of the construction of 
spinors. (As a convenient abuse of terminology, we shall call ‘spinor in the frame e@)’ a 
spinor obtained by the usual Minkowski-space construction [24] based on the orthonormal 
frame e@).) 

Let @ be a spinor field. Weyl‘s method [ I ]  considers that @ is parallel-transported 
from a point p to a point q along a vector field X (i.e. along the integral curves of X) iff 
the components of @ at q in the orthonormal frame I I e p  are the same as the components 
of 9 at p in the orthonormal frame e?), where “ e r ’  is the frame obtained by parallel- 
transporting ef) along X from p to q .  The difference between the parallel-transported 
spinor and the value of the spinor field at q is essentially, in the limit of q tending to p ?  
Weyl’s covariant derivative VX@. (See [ I ,  14,151 for more details.) It is then clear that this 
geometrical method is inapplicable for an arbitrary non-metric-compatible connection (i.e. 
a connection satisfying Vg f 0) since a non-metric-compatible connection does not respect 
the orthononnality of the frame. In other words, “e?’ is, in general, not orthonormal even 
though e?) is. 

One type of non-metricity plays a particular role: the one respecting orthogonaliry 
without respecting the norm under parallel transport, with the result that an orthonormal 
frame remains orthogonal during parallel transport. This happens when the covariant 
derivative of the metric along X is proportional to the metric itself: 

where A denotes a one-form. It is then easily seen that Weyl‘s geometrical method can be 
adapted to this more general case, which will henceforth be called the ’conformal case’. 
In the context of the Lie derivative, this generalization is found, for instance, in [23], 
where the formula analogous to (2.3) is written L x g  = kg. The methods developed in the 
following section will enable us lo go beyond the the restriction (2.3) while reproducing the 
above-mentioned results of [23] in the special case. 

(2.2) = 0 
’U 

Vxg = 2A(X)g (2.3) 
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3. Non-standard construction for the covariant derivative of a vector field 

This secbon is devoted to preparing the general formalism for spinorial covariant derivatives 
presented in section 4. For this study, the most convenient language is that of fibre 
bundles (see, e.g., [26]). In order to fix the notation, however, we shall begin with some 
considerations about ordinary tensor calculus. Then, we shall re-interpret the tensorial 
covariant derivative in terms of bundles. This is well known, and therefore a brief summary 
will suffice. Finally, we shall develop in more detail a non-standard bundle approach to 
the covariant derivative of a tensor. This method will prove easy to adapt, in section 4, to 
define the concept of covariant derivative of a spinor. 

Let M be a manifold. Let e(&) and e(”) denote, respectively, a basis in the tangent 
space TM of M and the dual of this basis. Then. according to tensor calculus, it is well 
known [27] that the covariant derivative operator V acting on the algebra of tensor fields 
defined over M is completely determined by the connection components Pa# defined as 

V@e(g) = Ve,upe) rY#me(y) .  (3.1) 

In general, the connection admits a non-vanishing curvature R, torsion T and non- 
metricity H. (See appendix 2 for details.) When the basis e(&), the metric g, the non- 
metricity H and the torsion T are given, the connection components are also uniquely 
determined, and the corresponding expression (B.5) for P u p  is found in appendix 2. (This 
is a generalization to T # 0 and H # 0 of the theorem [27] stating that there exists a 
unique metric-compatible, torsion-free connection.) 

These connection components Va# of tensor calculus may be re-interpreted, in a 
standard manner [26], using fibre bundles. More precisely, if P L ( M )  denotes the principal 
bundle of frames over M ,  namely the bundle having as fibre over the point p of M the 
set of all frames of TM at p ,  the structure group (or gauge group) of PL(M)  is GL(4) ,  
the general linear group in four dimensions. A field of frames above M is then a section 
of P L ( M ) ,  and a vector field on M is a linear combination of the basic vectors of this 
section. Moreover. in this context, a connection is defined as a one-form A over M with 
values in the Lie algebra, denoted by gZ(4), of the structure group GL(4)  and satisfying 
certain conditions. It is a well known result I261 that it is always possible to obtain such a 
connection A in terms of the connection components P n B  of tensor calculus as 

= reBpe(fi) (3.2) 

where the indices [Y and +6 belong to the Lie algebra of the structure group. 

e(,) along a vector field X as [26] 
The connection A enables one to define the covariant derivative Vxe(,) of the frame 

V X ~ , )  = -@dX)e(g) (3.3) 

and a treatment [26] similar to Weyl’s method of section 2 yields the covariant derivative 
of a vector field V as 

VXV = [ X ( V e )  +A’”,(X)V”]e(,p (3.4) 

This formula, taken together with (3.2), is identical to the one given by tensor calculus. 
With the metric g at our disposal, we can also construct the principal bundle of 

orthonormal frames (with positive orientation) PO+fM). Its fibre over a point p of M 
consists of all orthonormal frames of TM at p.  and its structure group is SO(3,  1) if the 
metric has signature + + f-. The Lie algebra, denoted by so(3, I ) ,  of the gauge g a u p  is 



4572 

therefore the algebra of antisymmetric matrices. Consequently the connection components 
r2fifi in an orthonormal frame may be re-interpreted as the connection A of the bundle 
formalism by 
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if and only if regp is antisymmetric in its first two indices. It is proved in appendix 2 that 
this is the case if and only if the connection is metric-compatible. If the connection is non- 
metric, either we return to the bundle P L ( M ) ,  or we employ the non-standard construction 
outlined below. The latter approach has the advantage that it is easily adapted to spinors, 
and so we proceed as follows. 

Consider the manifold M and two principal bundles above M :  P L ( M )  and PO+(M) .  
Given that i t  is always possible toexpress an orthonomal frame e(b) of the fibre of PO’(M) 
above a point p of M as a linear combination of a general frame e(,) of the fibre of P L ( M )  
above p. there exists a matrix A@+ such that 

e(&) = e(g)AB,. (3.6) 

This implies that, for every section U, of P L ( M )  and 02 of PO+(M),  there exists a set 
of matrices A relating U, to u2 via (3.6). For convenience, we denote by A’@ the inverse 
matrix of AB,. Under the same transformation, vector components change as 

(3.7) Vf i  = Ab \,’”, 

Let the connection components of tensor calculus be r,ji on an orthonormal frame 
e(p) .  On PO+(M), introduce a connection Agiven by 

(3.8) 

where the last step follows from (B.7) of appendix 2. This is always possible since, 
by construction, A;; is antisymmetric. Furthermore, A leads, by virtue of (3.4), to the 
following notion of covariant derivative, denoted by AV:  

A.. = - r [Fu&B) .^ .  = (Cbce + Q i c i  + HtfiDjs)e(’) 

’VxV [X(V i )  + AQ,(X)V’]le(b, (3.9) 

for all vector fields X and V .  
On P L ( M ) ,  introduce a connection D by 

w , ( x )  = A ” ~ x ( A ~ ~ )  - ~H,@,,X’ (3.10) 

where H is the non-metricity defined by (B.2) of appendix 2, and A is the matrix appearing 
in  (3.6). It leads to the following notion of covariant derivative, denoted by ‘V:  

= [x(vJ’)  + D ” V ( ~ ) ~ Y ] e ~ )  (3.11) 

for all vector fields X and V .  If the matrix A of (3.6) is used to express in  (3.1 1) the 
components VJ’  in terms of the orthonormal components Vf i ,  and e(,) in terms of the 
orthonormal frame e(ir), then (3.6), (3.7) and (3.10) imply that (3.11) becomes 

(3.12) 
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Thus we have at our disposal, by virtue of (3.Q (3.9) and (3.12), two notions of 
covariant derivative of the orthonormal frame e(;):  

(3.13) 

It should be noted that, if the connection is metric-compatible, H vanishes, rendering t? 
redundant. Our formalism then reduces to the usual one (3.3), (3.5) in this instance. 

The important point to emphasize at this stage is that, if we define a new covariant 
derivative Vxe(;) by 

(3.14) 

" A  

vxxe(;) = Cfio(X)e(p)  = r'oaxo,(fi) (3.15) 

which is identical to the answer assigned by tensor calculus to the quantity Vxqp) ,  even if 
the connection is non-metric. (When summing the right-hand sides of (3.13) to obtain the 
connection coefficient appearing in (3.15), use was made of (B.7) of appendix 2.) Finally, 
as soon as it becomes clear that V operates correctly on the frames, there i s  no difficulty in 
obtaining the covariant derivative of a vector field V: one simply adopts (3.4) and replaces 
A by C. 

In other words, given two sections U! and 02 of P L ( M )  and PO+(&)  respectively, 
we have introduced on these bundles the two connections A and B. Each of them possesses 
its own covariant derivative A V  and %'. When '%V is transformed into the orthonormal 
frames of the section q, it  induces a value for BVe,;) which has been arranged in such a 
way that the sum of 'V and 'V produces the correct expression for the covariant derivative 
of the orthonormal frame e(6). 

Of course. to define the covariant derivative of a vector field V for a general metric- 
incompatible connection, the above construction, with the antisymmetric part of the 
connection encoded in A and the symmetric part, in E ,  is unnecessarily complicated. It 
would have been possible to introduce immediately the complete connection in the bundle 
P L ( M )  of linear frames without ever requiring the bundle PO+(M) of orthonormal 
frames. However, to define spinor fields, as we shall do in the next section, the bundle of 
orthonormal frames plays a prominent role, and this is why a formalism involving explicitly 
this bundle is most appropriate in the case of spinors. 

4. General covariant derivative of spinor fields 

The framework developed in section 3 for covariant derivatives of vector fields will now 
be adapted to the problem of covariant derivatives of spinor fields. First, we shall briefly 
define spinor frames and spinor fields. (This will parallel the introduction of the bundle 
POt(M) and of vector fields in section 3.) Then, we shall associate a spinor connection 
with each of the two connections A and t? of section 3. This will provide us with a general 
notion of covariant derivative of a spinor field which will be compared, in section 5, with 
the alternative definitions available in the literature. As in section 3, fibre bundles are the 
most convenient language for this study. We emphasize that bundles have been used before 
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(e.g. in [2-91) to shed light on the question; the novelty of the present approach lies in the 
use of the decomposition of the connection into the parts A and U, 

Let PO+(M) be the bundle of orthonormal frames. Its transition functions [2&],  which 
belong to its structure group SO(3,  11, will be denoted by f , j .  On the other hand, consider 
the spin group SP(4), also denoted [251 by *Ft. For every element s of SP(4), the 
transformation xs? 

(4.1) 

where V means the Clifford product, is an element [25] of SO(3, l), the mapping being 
two-to-one. The bundle of spin frames P S f ( M )  over M is now defined [28] as the unique 
principal bundle with transition functions 5 j  belonging to SP(4) and given by 

Xj<] = tij. (4.2) 

Because of the double-valuedness of xs. the bundle P S t ( M )  is a double covering of 
POt(M).  Moreover, an assignment of a family of spin frames over M is defined as a 
section of PS+(M), and a spinor field over M ,  as a linear combination of the elements of 
the frames of this section. Spin frames will be denoted by i&, and their duals, by k ( M ) .  

The mapping x between the groups S P ( 4 )  and SO(3. 1)  induces a Lie-algebra 
homomorphism, denoted by x", between the Lie algebras sp(4) and so(3.1) of these groups. 
It is possible to prove [2,25] that x. is invertible and that the element of the Lie algebra 
sp(4) associated by x;' with an antisymmetric matrix F,, of so(3, 1)  reads, when an 
orthonormal frame is chosen in the cotangent space T'M: 

D J Hurley a d  M A Vmdyck 

1 x&) - s v x v s -  

- ~X;'(F) ~,,[e(k) v e(') - e(') v &31. (4.3) 

Consider now an irreducible representation y of the Lie algebra sp(4) in the space of 
spinors. (All such representations are equivalent [25].) This means that y associates with 
every s belonging to sp(4), a linear operator ys transforming a spinor into a spinor, which 
implies that ys may be written 

(4.4) 

In particular, by combining y with x;' of (4.3), one can associate with every antisymmetric 
matrix F,, of so(3. 1) an action AF on spinors as 

M p ( N )  @ - ys E (ys) N e(M) .  

AF = Y~;~(F) = -{Fwu(~em 0 ~~m - yCm o Y,o)) 

(4.5) --F 1 ( C f i ' ) M N Z ( N )  
2 

where o denotes the composition of mappings, and the following abbreviations have been 
used 

These considerations now enable us to define the covariant derivative of a spinor field 
as we did in section 3 for a vector field in the non-standard way. As in (3.4), @ 

we put 

Vx@ = X ( @ ' M ) Z ( M )  + W@) (4.7) 
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in which V(@) denotes the action of the connection on $. Following the non-standard 
method, we must construct V from the two connections A and B. Moreover, because of 
the additivity of A and B seen in (3.14), we impose 

(4.8) 

Given that A;o(X) of (3.8) is antisymmetric, the operation AA(x) of (4.5), (4.6) is well 

(4.9) 

v = v.4 + VB 
where ’DA and V5 describe, respectively, the actions induced by A and B on spinors. 

defined, and we may put 

DA 5 A A ( ~ )  = -~A;c(X)(u~”)M,@“’ @ e m .  - 

VXq = [ X ( @ M )  - lA,;(x)(ue’))MN@Nla(M) + DBo(@). 

Consequently, by (4.7)-(4.9), the covariant derivative reads 

(4.10) 

It is important to emphasizet that dfi; of (4.10) does, in general, contain terms coming 
from the non-metricity H, as it is clear from the contribution Hlp;ld to (34 ,  the definition 
of A;;. We are, therefore, not constructing the action VA of (4.9) by ‘lifting’ to spinors the 
metric-compatible connection induced by A. Had we done so, the mettic-incompatibility 
H would not have appeared in the definition (4.10). as it does (implicitly) through the 
definition (3.8) of A;;. 

If we now turn to the construction of VB of ( 4 4 ,  we see that a definition similar to (4.9) 
is not applicable to B since B;; is symmetric, by virtue of (3.12), and the set of symmetric 
matrices does not form a Lie algebra. There can thus be no Lie algebra homomorphism 
between this set and the Clifford algebra sp(4). Some authors (e.g. [5-71) then put 

(4.11) 

in which the superscript K has been used to distinguish this operator DB from another 
one defined below. Because of the symmetry of I3;o and the antisymmehy of up’, it is 
equivalent to write 

W$r) E 5  K4($1) = 0 

(4.12) 

By combining (4.10) and (4.12), and using (3.15), we obtain the final expression for the 
covariant derivative KVX: 

‘DB = - $ ~ ; ( x ) ( u  i 3  ) M N e  - ( N )  @i&. 

K ~ x @  = [ x ( q M )  - I ~ . . . x ~ ( ~ Q O ) ~ ~ S ~ I ~ ( ~ ) .  2 P Y U  (4.13) 

For a general connection, ‘V is a well-defined operator which reduces to the Weyl covariant 
derivative if the connection is metric-compatible, and this formula is the one adopted, e.g., 
in [7] and [21] but is different from that of [23]. (The latter state their results for the 
problem of the Lie derivative, but the translation between Lie and covariant derivative is 
elementary and can be found in appendix 1.) 

It is, however, possible, in  contrast with (4.11), to go further than to ‘lift’ trivially, to 
spinors, the action of B as 0. If the tensor B;;(X) is decomposed into its irreducible parts 
under the subgroups of GL(4), the finest decomposition [29], which pertains to SO(3, l), 
is 

B,i(X) = OB,,(X) + 7 ( X ) V & V  

OB;;(X) = B,;(X) - T ( X ) V r r ”  
(4.14) 

4 1 ( X )  = q“flB,s(X). 

t The authors would like to thank the referee for drawing their mention to the appropriateness of insisting on lhis 
point. 
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The explicit expressions for the trace-free part O B p i ( X )  and the trace part T ( X )  read, after 
employing (3.12): 

OBfii(X) = - f X ‘ H i p ;  - 7 ( X ) q P .  - 8 7 ( X )  = X i H i b a .  (4.15) 

The effect of ‘ T ( X ) q F v  on an orthonormal frame e@) is to respect the orthogonality 
while creating an expansion of the base-vectors under parallel transport along X .  More 
precisely, by (3.11) the trace part 7 ( X ) q P U  acts on an orthonormal frame as 

‘VXeGl = 7 ( ~ ) e ( p ) .  (4.16) 

This behaviour is equivalent to (2.3) and corresponds to what was called the ‘conformal 
case’ in section 2. On the other hand, O B p ; ( X )  alters the scalar products while respecting 
the volume, which corresponds to generating a shear of the basis. The ‘lift’ denoted by K D ~  
in (4.1 1) ignores thus the influence of both expansion and shear on the parallel transport of 

D J Hurley and MA Vandyck 

spinors. 
As far as the shear is concerned, there is no natural way of ‘lifting’ it to spinors other 

than by 0 since the argument that the symmetric matrices do not form a Lie algebra holds 
for the shear as well as for the whole of Bz; (X)  itself. There is, however, a canonical lift 
of the conformal part 7, as emphasized in section 2. If one considers the action (4.16) of 
T on an orthonormal frame, it is natural to put, for the spin frame Z[M):  

‘v,Z[M) = ;?-(X)i[,w) (4.17) 

in which the factor 112 has been inserted because of the double-valuedness of the covering 
of POt(M) by PSt(M). 

These considerations lead us to adopt, for DB of (4.10), the value 

D/j = DIJ + ’07 = 0 + 9 7 X ) Z ‘ M ’  @ i ( M )  (4.18) 

where & “ ) @ O ( M )  is easily seen as being the identity operator. By virtue of (4.10) and (4.18). 
we have therefore, as alternative expression to (4.13), the following covariant derivative of 
a spinor $: 

VX@ = { X ( p M )  + [ - i d i i ( x ) ( O P i ) M N  + i 7 ( X ) 8 M N I $ N ] k [ M ) .  (4.19) 

After substitution into this expression of the explicit form (4.15) for T ( X )  and (3.15) for 
.4p~(X), there follows 

v,y$ = ( X ( @ ( I M )  - [ i r p ; i X ’ ( ~ P ’ ) M N  + ~ X a f f ~ B ~ s M N ] ! b N ] ~ ( M )  (4.20) 

which is our final expression for the covariant derivative of a spinor @. It is now in order 
to comment on it and to compare it in more detail with alternative ones available in the 
literature. This will now be done in the conclusion. 

5. Conclusion 

In this work, we presented a new formalism to define the Lie and covariant derivatives of a 
spinor field in complete generality. We first traced, in section 2, the origin of the difficulty 
in defining these derivatives to the fact that an orthonormal frame, under Lie or parallel 
transport, does not remain orthonormal in general. Then, in section 3, we developed a non- 
standard bundle formulation of covariant differentiation of a vector field which consisted 
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essentially in expressing on the bundle of orthonormal frames the antisymmetric part of the 
connection and the symmetric part, on the bundle of general frames. 

It was possible to ‘lift’ canonically the antisymmetric part to the bundle of spin frames 
by exploiting the homomorphism between the algebras of the structure groups of the spin 
bundle and of the bundle of orthonormal frames. (This had been done before [2-91.) For 
the symmetric pa% it was seen that no such homomorphism could exist, and therefore it 
was necessary to use a different type of ‘lift’. 

After decomposing the symmetric part into contributions which are irreducible under 
SO(3, 1) and which may be interpreted as the shear and the expansion due to the operation 
of parallel transport, it was shown that only the expansion could be ‘lifted‘ canonically to 
spinors. The final expression for the covariant derivative thus obtained reads 

ox@ = i x ( p ‘ )  - [ ; rp; ix~(09MN + & ~ ~ H ~ ~ ~ ~ M ~ I ~ N I P ~ ~ ,  
(5.1) 

where the definitions of the quantities rfi;i and H i p ;  can be proved from (B.2) and (B.3) 
in appendix 2. 

If the connection is metric-compatible, the contribution involving H in (5.1) vanishes, 
and our definition agrees with Weyl’s definition [ l ]  adopted by all the other authors. If the 
connection is metric-incompatible, the ui;  term in (5.1) is the same as in [7] and [Zl], but 
there is, in addition, the ‘conformal term’ involving J M ~ ,  not found in [7] or [21]. 

For the reason explained in section 2, some authors [23] have given special attention 
to the case V x g  = 2A(X)g, for a certain one-form A ,  which is often claimed to be the 
most general situation where the covariant derivative has a geometrical meaning [25]. In 
our formalism, this corresponds to the special value for H 

(5.2) 
If this expression is substituted into (5.1), our derivative agrees with that of [23] and, of 
course, differs from that of [7] and [21] by the above-mentioned conformal term. 

Even in the case of a general H ,  i.e. when H is not of  the form (5.2), an additional 
remark may be made about our definition (S.l), in relation with (5.2): it is possible to 
construct, from an arbitrary connection, a unique conformal one. This is done by assuming 
formally that (5.2) holds and constructing A6 formally by inverting (5.2) as 

v x e G )  E -rfi3bxGe(% vxg = ~ “ . - . , ( i d  @ e(;) 
UiL” 

H . . -  - 2A. 
SPY - U q l ” .  

(5.3) 8A. - H.PA 
U -  u p .  

This formal A; may then be substituted in the standard definition of the covariant derivative 
valid for a conformal connection, for instance in [23]. This is not what we are doing here, 
as it is easily established from (U), (5.3) and (B.7). It is also quite obvious that our 
method is bound to be different from ‘mimicking’ a conformal connection since the latter 
approach, based on (5.3), uses only the information from the non-mehicity Hpjs which is 
contained in the contraction H i B j .  However, our definition (5.1) uses, in addition to this 
contraction, the contribution Hrk;ls which is (implicitly) present in the antisymmetric part 
of the connection term Tp;b, as can be seen from (B.7). Of course, when the connection 
happens to be conformal, we are back to (5.2), and the comments made there apply. 

All these considerations can be trivially repeated for the Lie derivative. The development 
is briefly sketched in appendix 1. It is sufficient to state here the result: 

Lx@ = [ X ( @ M )  + [4Lpdufi;)MN - Q L 5 j s M N ] p N } e ( M )  

Lxe‘C’ LP,,(O) Lxg  = (Lg; + L;&‘P) @ e@) .  
(5.4) 

The explicit expression for Lp; in terms of X is found in appendix 1. 
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Appendix 1. Results for the Lie derivative 

As announced in the main text, the problem of the Lie derivative is almost identical to that 
of the covariant derivative, provided a similar formalism is used in both cases. Following 
the conventions of [19], we define the Lie derivative by 

cxem = LPoe!S), (A.1) 
Such an L always exists since the Lie derivative is type-preserving. It is easy to prove [19] 
that, in terms of X ,  this L is given by 

(A.2) L'. - - e ( q ( X B )  + DF,Xa 

where the commutation coefficients D are defined in appendix 2. When (A.l) is compared 
with Vx&) of (5.1), the following 'translation rule' is found to transform covariant 
derivatives into Lie derivatives: 

- rBS2x2 +. LG,, (A.3) 
Furthermore, (A.l) implies that t x g  has the value 

L x g  = ( ~ g i  + L;fi)e'g) 8 e(') 

ail" p" + L i i .  

(A.4) 

which, together with the expression for Vxg of (.5.1), yields the second 'translation rule' 

(A.5) 
The formula (A.4) also implies that X is a Killing vector if and only if L is antisymmetric. 
(Details are avilable in [19].) When the two rules (A.3) and (A.5) are applied to the 
definition (5.1) of Vx$,  one finds, for the Lie derivative, the definition given by (5.4). 

It should be noted that the literature seldom uses the quantity Lpv of (A.l) but expresses 
the Lie derivative in terms of the covariant derivative [5-7,21,25]. This confuses the issue 
since it might seem to imply that the Lie derivative depends on the connection r through 
the covariant derivative. More precisely, some authors [5-7,21,25] give the following 
definitions (in the absence of torsion and non-metricity): 

X u H  ... + L.. 

*&* = *vx* + 5 'x- p:y . (uq)"N$Nz!M) 
('4.6) *vxq = X ( + ~ ) + ~ ,  - frgSax2(@)MN+NNi(M) 

where the semi-colon denotes the tensorial covariant derivative, and the asterisk on the left 
has been employed to avoid ambiguities with our operators of Lie and covariant derivative. 
If equations (A.6) are adopted in the general case, one proves easily, after substituting the 
explicit form (A.2) for L and (BS) of appendix '2 for r k u ,  that 

[X($')  + i L r + ~ f i ( U ~ ' ) ~ ~ $ ~ ] z ( ~ )  = *Lx$ + i(H@i]e - TIpi le )X ' ( (oFe)MN$Ne(M)  

(A.7) 
from which the relationship between *CX$ and our definition L x $  can be determined. 
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Appendix 2. General connections 

An arbitrary connection r put on a manifold exhibits, in general, torsion (T), curvature (R) 
and non-memcity ( H ) .  If V, e(,) and e(&) denote, respectively, the covariant derivative, an 
arbitrary basis in the tangent space and the dual of this basis, one may define the relevant 
quantities as 

(B.1) 

(B.2) 

(B.3) 

T ( X ,  Y )  = V x Y  - V y X  - [X, Y ]  

H ( Z ,  X ,  Y) = (Vzg ) (X ,  Y) s HnpYe(") @ e(p) €3 e(,) 

Vae(p) = Ve,.,e(p) = rYpue(y) 

[e(,), = DYzpe(y) 

TYmpde) €3 e(#) @e(,)  

where X, Y, Z are vector fields and g is the metric. (The definition of the curvature R will 
not be necessary for what follows and is therefore not reproduced here.) 

These relations imply: 

.royp - rep, = reg, + D~~~ 

ruSy = g a , r p g y .  

rap, E (CYBY) + emp, - K~~~ 

rep, + ram, = e(,)(gWp) - H,.# (B.4) 

Those, in turn, yield the explicit expression of the connection r in terms of g, T ,  H and 
D:  

( C Y ~ V )  = [c@y]+ C,p, 

[CYBY] = X(e(,)(g,g)) = +[orypJ 

Capy E C(DYeg) = -CpaY 

Q,p, E C(T,,p) = -Qpoy  

K.gy E C(H,,p) = +K,,p 

(Levi-Civita connection) 

(ChristoFfel symbol) 
(B.5) 

(non-holonomicity) 

(contorsion tensor) 

(non-metric part) 

in which the symbol C applied to a three-index object W y a p  is defined as 

2C(W,ap) = w,,g + w,,, - We$,. (B.6) 

For the purposes of the construction of the general covariant derivative of a spinor field, 
it is convenient to decompose the connection coefficients Fop, of (B.5) in terms of their 
symmetric and antisymmetric parts r(*g), and Flnplr respectively as 

2r(mp)p = rap, + rpa, = e(,)(gap) - ~ - 6  

r[egl, = I(r,gp - r , d  = --e([e)(gp~r) +cap, + cap, + HWI,. 
1 (8.7) 

In the special case where an orthonormal frame is selected at each point, the metric is 
constant and therefore drops out of (B.7) completely. In addition, the symmetric part r(.+q,, 
vanishes then iff the connection is metric-compatible. It is important to emphasize that, to 
distinguish tensorial components in an orthonormal frame from those in an arbitrary one, 
the former will be surmounted by a caret. Thus. rajp denotes the orthonormal components 
of the connection, whereas rapP denotes arbitrary components. 
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